MEM-264 Applied Statistics

Department of Mathematics and Applied Mathematics, University of Crete

Costas Smaragdakis (kesmarag@uoc.gr)

18th lecture - 09-04-2021

- In the one-way ANOVA, we classified populations according to a single factor (categorical variable).
- ▶ In the two-way ANOVA, we will extent the model to take into account two factors.

With this analysis we can investigate interactions between factors!

$$(Page 6)$$
 Overall sample mean $\overline{Y} = \frac{310 \cdot 6.38 + 400 \cdot 6.52 + \cdots + 210 \cdot 6.41}{310 + 510 + \cdots + 210}$

► There are three null hypotheses (Rows, Columns, interactions)

The three null hypotheses of the model

$$H_{I0}: \alpha_1 = \alpha_2 = \dots = \alpha_I$$

$$H_{J0}:\beta_1=\beta_2=\cdots=\beta_J$$

 $H_{IJ0}:\gamma_{11}=\cdots=\gamma_{IJ}$

Two-way ANOVA

Sample mean for the estimation of the mean μ_{ij}

$$\bar{Y}_{ij,n_{i,j}} = rac{1}{n_{i,j}} \sum_{k=1}^{n_{i,j}} Y_{ijk}$$

Sample variance for the estimation of the variance σ^2

$$S_{ij,n_{i,j}}^2 = \frac{1}{n_{i,j} - 1} \sum_{k=1}^{n_{i,j}} e_{ijk}^2, \quad e_{ijk} = Y_{ijk} - \bar{Y}_{ij,n_{i,j}}$$

Pooled sample variance

$$S_p^2 = \frac{\sum_{i,j} (n_{i,j} - 1) S_{ij,n_{i,j}}^2}{\sum_{i,j} (n_{i,j} - 1) = N-IJ} \xrightarrow{\text{this is a better approximation}} \sigma_{\text{total}} \sigma_{\text{total}} = N-IJ$$

$$N = \sum_{j=1}^{T} \sum_{j=1}^{T} n_{j,j}$$

Overall sample mean

$$\bar{Y} = \frac{1}{\sum_{i,j} n_{i,j}} \sum_{i,j,k} Y_{ijk}$$

Sample variance between groups

$$S_b^2 = \frac{\mathrm{SSM}}{\mathrm{DF}} = \frac{1}{IJ-1}\sum_{i,j}(\bar{Y}_{ij,n_{ij}} - \bar{Y})^2$$

In two-way ANOVA, the terms SSM and DF can be decomposed as follows:

$$SSM = SSI + SSJ + SSIJ$$

$$DF = DFI + DFJ + DFIJ$$

$$SSM = SSI + SSJ + SSIJ$$

Two-way ANOVA table

		DF	F (numerator)	F (denominator)		SSE
F_{I}	Rows	I-1	SSI/(I-1)	S_p^2	PF= N-15	$f_{I} = \frac{\overline{t-1}}{S_{p}^{2}}$
Γ	Columns	J-1	SSJ/(J-1)	S_p^2	DE =N -IJ	
Fzz.	Interaction	(I-1)(J-1)	SSIJ/[(I-1)(J-1)]	S_p^2	DE = N-I2	

P-value_I P. Value_J \$\alpha = 0.05\$ P-Value - IJ

After the analysis we will obtain three p-values

p-value for I (or/and J)

If this p-value is smaller than the considered α, this means that the first (or/and second) factor have a statistically significant effect on the values.

p-value for IJ

If this p-value is smaller than the considered α, this means that there is a statistically significant interaction effect beetween the factors.

P-Vilue-II < X

Department	Male (j=1)	Female (j=2)	Mean
Mathematics (i=1)	310 (mean: 6.38)	400 (mean: 6.52)	
Physics (i=2)	510 (mean: 6.41)	330 (mean: 6.56)	
Computer Science (i=3)	190 (mean: 6.44)	210 (mean: 6.41)	
Mean			